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Nonverbal Cues in Human–Robot Interaction: 

A Communication Studies Perspective 

JACQUELINE URAKAMI and KATIE SEABORN , Tokyo Institute of Technology, Tokyo, Japan 

Communication between people is characterized by a broad range of nonverbal cues. Transferring these 
cues into the design of robots and other artificial agents that interact with people may foster more natural, 
inviting, and accessible experiences. In this article, we offer a series of definitive nonverbal codes for human–
robot interaction (HRI) that address the five human sensory systems (visual, auditory, haptic, olfactory, and 
gustatory) drawn from the field of communication studies. We discuss how these codes can be translated 
into design patterns for HRI using a curated sample of the communication studies and HRI literatures. As 
nonverbal codes are an essential mode in human communication, we argue that integrating robotic nonverbal 
codes in HRI will afford robots a feeling of “aliveness” or “social agency” that would otherwise be missing. 
We end with suggestions for research directions to stimulate work on nonverbal communication within the 
field of HRI and improve communication between people and robots. 

CCS Concepts: • Human-centered computing → Interaction paradigms • General and reference →
Surveys and overviews • Computer systems organization → Robotics • Human-centered computing 

→ Interaction paradigms; 

Additional Key Words and Phrases: Robotics, nonverbal communication, human–robot interaction, commu- 
nication studies, nonverbal codes 

ACM Reference format: 

Jacqueline Urakami and Katie Seaborn. 2023. Nonverbal Cues in Human–Robot Interaction: A Communica- 
tion Studies Perspective. ACM Trans. Hum.-Robot Interact. 12, 2, Article 22 (March 2023), 21 pages. 
https://doi.org/10.1145/3570169 

1

C  

b  

d  

t  

t  

s  

n  

T
g
A
d
g
P
p
t
A
p
©
2
h

 INTRODUCTION 

ommunication studies has a long and rich history, with many of today’s ideas being traceable
ack to scholars of ancient Greece and Rome. Communication is a complex process that can be
efined in many ways. Before turning to applying what we know about human communication
o human–robot interaction (HRI) , we have to start with a useful definition of communica-
ion. In its broadest sense, communication is the discriminatory response of an organism to a
timulus [ 1 ]. According to Hauser [ 2 ], communication systems consists of three features: the sig-
al source, a transmission channel, and a pool of perceivers. Thus, communication involves two
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r more communication partners who are either sending or receiving messages. In HRI, one of
he communication partners is a machine; while often a social robot, the machine may be any
ind of human-interfacing agent, interface, or artificial intelligence– (AI) infused environment,
uch as a voice assistant, smart vehicle, or conversational user interface, to name a few. 1 There-
ore, any definition of communication in HRI needs to account for non-human (and potentially
on-humanlike) message transmission and communication behavior that is intentional or unin-
entional. Furthermore, definitions of communication differ in being sender or receiver oriented.
ince self-agency and conscious intent in sending a message are questionable 2 in the case of a
obot as the sender, a receiver-based perspective is more useful in HRI. Therefore, we define com-
unication as an interactive process whereby a receiver (i.e., a person) assigns meaning to one or

ore stimuli that are transmitted intentionally or unintentionally by a sender (i.e., a robot) . With
his definition in hand, we must now articulate what factors of human–human communication
ay be applied to human–robot communication and to what extent. 
One key factor is nonverbal communication, which is generally defined as any transfer of mes-

ages that does not involve the use of words [ 3 ]. This also includes sounds that are not words,
uch as backchanneling (“uh” and “ah”) as well as the pitch, tone, and intonation of the voice.
etween humans, nonverbal communication represents a significant ratio of all face-to-face com-
unication. Human conversation, for instance, is accompanied by a variety of gestures, postures,

acial expressions, and eye movements, among other nonverbal codes. Nonverbal codes describe
he variety of nonverbal stimuli, or cues, that occur within a communication context. Nonver-
al cues can then be described as any information within a nonverbal communication process to
hich a receiver assigns meaning, regardless of whether this meaning was transmitted intention-

lly or not by the sender. This “unspoken language” is an integral part of the message and its
ransmission in human–human communication. As such, nonverbal cues may be useful in cases
here robots interact directly with people, as well. Indeed, recent research in HRI (e.g., Refer-

nces [ 4 –8 ]) has acknowledged the importance of nonverbal cues, especially for novice users in
ocial settings (e.g., Reference [ 6 ]). Moreover, designers of robots often attempt to consider how the
ppearance of a robot affects human behavior, such as by creating friendly-looking, approachable
ocial robots. Examples include human-sized social robots like Pepper (SoftBank/Aldebaran Ro-
otics), small, toylike robots with facial expressions for play and entertainment like Cozmo (Digital
ream Labs), and sturdy, intimidating surveillance robots like the K5 (Knightscope). Considering

he growing interest in designing robots to use nonverbal cues when communicating with peo-
le, a timely and useful addition to help direct future research and practice would be an overview
f common nonverbal codes established by the field of human communication. In particular, we
eed guidance on how these codes may be, and, where possible, have been, applied in HRI contexts
s cues. 

To this end, we present an overview of nonverbal communication for HRI, grounded in human
ommunications research and existing work on robots and other artificial agents. The goals of this
rticle are threefold: (1) to present a definition of nonverbal communication in HRI based on hu-
an communication models, (2) to provide a framework of nonverbal codes derived from human

ommunication studies, and (3) to demonstrate how these nonverbal codes may be and have been
 For the sake of simplicity and with relevance to this venue, we will use the term “robot” from here onward. However, 
e do not suggest that this material is limited to conventional robot categories. Indeed, the term “robot” can be defined 

n various ways and applied broadly to technologies ranging from algorithms to autonomous agents, and we use it in this 
pirit. 
 We fully expect that this view will become outdated with advances in AI, especially around machine agency and self- 
wareness. For now, however, it is an accurate take on reality. 

CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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pplied in HRI. We introduce a theoretical framework of robotic nonverbal cues based on their
erceptibility through the human sensory systems outlining nonverbal cues that address vision,
uditor y perception, haptics, olfactor y, and gustator y perception. We begin with an explanation
f our rationale for including nonverbal communication in HRI. We then describe the major char-
cteristics of nonverbal communication from communication studies. Following this, we outline
nd describe the framework of common nonverbal codes that play an important role in human
ommunication and are relevant for HRI. We discuss and critique examples of where these codes
ave already been studied, as well as provide ideas for future research and development. We end
ith an outlook on the next steps for explorations of nonverbal codes in HRI. 

 ADAPTING HUMAN NONVERBAL CODES FOR HRI 

any in robotics believe that robots can coexist as social agents alongside humans but not neces-
arily as their social equals. How robots and other AI-based machines become socially embodied
gents, and whether this state is static or circumstantial and unstable, remains an open question
 9 ]. Some Japanese roboticists have argued that to become a social agent, robots should engage the
orld with sensitivity, sensibility, feeling, aesthetics, emotion, affection, and intuition [ 10 ], called a

okoro function . Kokoro in Japanese has a complex meaning that can be translated as any of heart,
pirit, and/or mind, integrating emotion, thinking, and intention, and describing the inner world

r essence of a person (or in this case a robot). Thus, robot creators in Japan often refer to robots
s belonging to a “third existence,” where a robot is something between a living and non-living
reature [ 11 ]. A question remains about how this inner world of a robot can be made accessible
o human communication partners. Furthermore, people’s reactions and internal states are often
xpressed through physiological changes that are visible to others. Interpretation of physiological
ues are highly contextual. Facial flushing can indicate embarrassment, stress, happiness, excite-
ent, anger, and so on. Heavy breathing can signal anxiety, even a panic attack, or be a natural

tate of exertion after intense exercise. These cues can add to the perceived “aliveness” of a ro-
ot and contribute to impressions of its kokoro function. Incorporating physiological cues within
RI contexts can enhance the perception of a robot as being “alive” or humanlike. For example,
ütkebohle et al. [ 12 ] simulated blushing in the robot Flobi with an array of red LEDs in its cheeks,
hereas Yoshida and Yonezawa [ 13 ] developed a stuffed bear-style robot that can breathe, has a
eartbeat, and has varying temperature and other involuntary bodily movements related to phys-

ological and psychological states. 
In this article, we develop the idea of giving robots a feeling of “aliveness” or “social agency”

hrough the use of nonverbal communication modalities. In human communication, nonverbal
odes are an essential mode of communication that, among other things, reveal a person’s role
nd status (e.g., through clothing style), provide information about feelings and emotions (e.g.,
acial expressions, gestures), or offer redundancy in speech (e.g., gestures and body movements).
nriching robot communication with nonverbal codes derived from human communication could
elp human collaborators perceive robots as social agents improving mutual understanding and
oordination. Explorations in nonverbal communication with robots has a history going back sev-
ral decades [ 6 , 14 ]. Roboticists have sought to create intuitive interactions between robots and
eople and increase human acceptability of robots [ 6 , 15 ]. Nehaniv et al. [ 16 ] developed a taxon-
my of gestures related to robotic arm movements. De Santis et al. [ 17 ] surveyed the HRI litera-
ure on physical HRI involving mechanical and control components. Previous research has looked
t affective expressions in robotic body movements that did not include face or verbal compo-
ents [ 18 ] or studied “tactile HRI,” or the ability of robots to detect a person’s physical touch [ 19 ].
n a social twist, Van Erp and Toet [ 20 ] produced 10 guidelines for affective and interpersonal
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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omponents of robotic touch. Kruse et al. [ 21 ] and later Rios-Martinez, Spalanzani, and Laugier
 22 ] each covered social distance and other cues related to robot navigation of social spaces in their
urveys. The literature review conducted by McColl et al. [ 14 ] was limited to human perception of
obot intention through nonverbal gestures in decision-making scenarios. Admoni and Scassellati
 23 ] focused on eye gaze in social HRI contexts. Saunderson and Nejat [ 6 ] focused on robotic mo-
ion and movement: kinesics, proxemics, haptics, and chronemics. Explorations along these lines
re expected to continue as we continue to deploy robots in social contexts with people. 

Yet the vast majority of the work so far has focused on a limited range of nonverbal cues,
ften exploring a single cue in isolation rather than evaluating a range of cues, which is more
epresentative of human models [ 6 ]. Additionally, there has been a strong technical focus, with
ar less work exploring how robots with nonverbal cues influence people’s attitudes and behavior
 6 ]. In this article, we take one step toward addressing these gaps and limitations by applying a
omprehensive human communications studies perspective to the HRI context. We now turn to
escribing the nature of nonverbal communication among people, including the full range of cues
nd how they work together. 

 NONVERBAL COMMUNICATION CHARACTERISTICS 

ommunication , as we defined above, is an interactive process involving a signal source, a trans-
ission channel, and an agent (or perceiver) acting on a stimulus. In HRI, either the agent or the

ource of the stimuli is a robot. What form this stimulus takes can vary. In the case of nonverbal

ommunication, the stimuli do not take the form of speech. As such, we define nonverbal commu-

ication in HRI as any type of communication between people and robots that does not involve
ords but includes nonverbal utterances and behaviours. We build on a psychological model of

ommunication that distinguishes between a sender who transmits a message and a receiver who
ecodes the message [ 24 ]. Communication is an interactive process where messages are contin-
ously exchanged between sender and receiver. Here, we take a simple approach, focusing on
cenarios where the robot is the sender of nonverbal cues and a person is the receiver, having to
ecode and assign meaning to the cues transmitted by the robot. We define nonverbal cues as any
timuli to which a receiver (person) assigns meaning, independently of whether these nonverbal
ues were transmitted intentionally or unintentionally by the sender (robot). Nonverbal communi-
ation differs from verbal communication in several important ways. Understanding the features
f nonverbal communication that distinguish it from verbal communication is essential for the
uccessful implementation of nonverbal cues in HRI, but it is also one of the greatest challenges.
ransferring nonverbal gestures from humans to robots is likely to fail if the prerequisites for non-
erbal codes are violated. In general, humans are accustomed to interpreting nonverbal codes in
ther humans and as such can be sensitive to robots that deviate from learned expectations. Non-
erbal communication has several characteristics that distinguish it from other communication
ystems. We outline seven that we deem relevant for implementing nonverbal codes into robots. 

.1 Multiple Interpretations 

onverbal cues can be interpreted in different ways. For example, a person moving away from a
obot can be a sign of disinterest, fear, or surprise or even signal an end to the interaction. In a
imilar way, nonverbal cues used by a robot can be interpreted by a person in different ways as
ell. Changing the eye color of a robot, as done in a study by Koike et al. [ 25 ], evoked a variety
f different reactions in people. This poses a problem to the designer: how to make sure that the
ntended message has been received and understood on both sides. Including redundant signals
nd using a variety of non-verbal codes can help to clarify the message. 
CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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.2 Unintentional Behavior 

onverbal cues interpreted by a receiver may or may not have been part of the intended message .
he robot’s body shape and its movement might be constrained by what is technically feasible.
onetheless, these features might be interpreted by a receiver as intentional nonverbal cues. Also,

t is difficult to convey different emotional expressions through the voice of a robot, such as sound-
ng happy, sad, or concerned. An emotionless voice independent of what is said can be confusing
or a receiver and is often interpreted as a lack of empathy [ 26 ]. Additionally, when the affective
uality of the voice does not match expectations, this can cause confusion or otherwise provide a
egative experience [ 5 ]. 

.3 Multiple Cues 

here are multiple, separate nonverbal cues that play a role in communication . Clothing, facial ex-
ressions, and hand gestures all send out a message that may be interpreted individually or in
oncert. When the same message is sent via each cue, the combined impact of all cues is intensi-
ed. However, if cues are contradictory, then they can cause confusion and thereby undermine the

mpact of the message, for example, if a sender shakes his or her head left and right, a signal of “no”
n most cultures, while also saying “yes” out loud. Exceptions exist, such as when a sender uses a
ertain code or sensory modality to send a message to a certain receiver and not others, or when a
ender presents two cues simultaneously that are intended for different receivers. For example, a
ender may be absorbed in playing a video game, with eyes glued to the screen, their whole body
acing the game, and actively pounding away a game controller, while also carrying on a conver-
ation about other matters with a receiver who is present but observing. On the technical side,
onverbal response and behavior frameworks will need to be developed for robots or extended
rom existing, similar offerings, such as Lee and Marsella’s [ 27 ] nonverbal behavior generator for
mbodied conversational agents (ECA) . Programming and markup languages developed for
CAs, such as the Behavior Markup Language [ 28 ], could be used to develop nonverbal expres-
ions for robots in HRI contexts, as well. 

.4 Immediate Message Transmission 

onverbal cues are always being sent, intentionally or unintentionally, when we are face-to-face with

 communication partner . Basically, we cannot not communicate. As such, the mere presence of a
obot involves transmission of messages that will likely be interpreted by a receiver. Furthermore,
he presence or absence of specific behavior in the robot will likely be interpreted by a receiver. For
xample, mechanical noise generated by motors that move a robot’s arms, fingers, or legs become
art of the nonverbal message and can create a disturbing effect. 

.5 Continuous 

erbal messages have a clear beginning and end, indicated by syllable, word, and sentence bound-
ries. Nonverbal cues, however, are without discrete starting and ending points but rather flow into

ne another . It is difficult to isolate body movements and gestures, such as greeting someone or
aving a hand. Similarly, facial expressions are not static; rather, they are a series of expressions

hat shift over time to indicate certain states. Indeed, creating continuous nonverbal cues is prob-
bly one of the biggest challenges in robotics. We already have some evidence of this, in that the
solated or separate nonverbal gestures that are often explored in robotics research or deployed in
ommercial robots tend to be difficult to interpret, leading to feelings of the robot being unnatural
nd uncanny [ 29 ]. 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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.6 Concrete 

onverbal cues are often concrete and representational rather than abstract and arbitrary , compared
o verbal messages. For example, a motion gesture can represent actual movements of objects or
eople in the real world, indicating a connection between form and meaning in nonverbal cues
 30 ]. Therefore, nonverbal cues used in HRI need to be synchronized and especially match any
peech content. Arbitrary and abstract gestures that are often preferred by experts when inter-
cting with technical systems [ 31 ] should be avoided (as far as the technical limitations of robot
otion allow), because they are difficult to interpret for novice users. 

.7 Contextual and Cultural 

ven though some nonverbal cues, such as facial expressions for basic emotions in typical contexts
e.g., happiness, anger, fear, sadness, disgust, surprise), are interpreted similarly in most places in
he world in modern times [ 32 ], many nonverbal cues are only shared among specific cultural groups

nd within generational cohorts . For example, Reference [ 33 ] found that Japanese and Australians’
valuation of an android differed in perceived anthropomorphism, animacy, and perceived intel-
igence. Furthermore, simple cultural cues indicating in-group membership can help reduce unfa-
orable biases toward robots [ 34 ]. Therefore, nonverbal cues for robots need to be designed and/or
arefully selected for the intended culture and cohort, as well. 

 THE NONVERBAL CODES 

 variety of nonverbal codes have been discussed in communication studies. However, several
actors need to be considered when selecting nonverbal codes for HRI. As mentioned above, we
ocus in this article on a simple communication model whereby the robot is the sender and a hu-
an is the receiver. On the one hand, nonverbal codes must take into account the physical and

echnical limitations of the robot, as well as its available expressive capabilities. These constraints
nclude the size and body shape of the robot, available movement patterns, and facial expressions,
mong others. On the other hand, nonverbal codes must be able to be perceived by the human
ensory system and interpreted in accordance with human experience and expectations. We must
void nonverbal codes that are not detected by the human sensory system, including meaning-
ess signals and codes that are difficult to interpret due to the person having no prior experience
ith code, i.e., no existing schema for directing their perception of the stimulus. Therefore, the

ramework presented here (Figure 1 ) uses the human sensory channels as a foundation. It shows
ow a robot could be designed to address each sensory channel with different types of nonver-
al codes inspired by human communication studies. The main focus is on vision and auditory
ensory channels. However, we also explore how haptics and olfactory sensory channels can be
ddressed and included the gustatory channel for completeness. 

.1 Visual Nonverbal Codes 

4.1.1 Physical Appearance and Object Language. Communication is often preceded by visual
bservation of the communication partner, including their physical appearance. In HRI, the most
elevant examples may be body type, clothing, and object language. Objects or artifacts can trans-
it powerful messages about the sender. Object language refers to all intentional or unintentional

isplays of material things [ 35 ]. Object properties such as size, shape, form, texture, and color are
mportant communication factors. They affect the affective responses of the receiver. For example,
ymmetrical objects and round shapes with smooth edges stimulate a positive impression, whereas
harp objects can create a formal or negative impression. 
CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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Fig. 1. Relation of nonverbal codes for HRI to the five human sensory channels. 
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4.1.1.1 Body type. Early research on body type distinguishes between three typical forms:
1) endomorph ( short, round, and fat), (2) ectomorph (tall and thin), and (3) mesomorph (muscular
nd athletic) [ 36 ]. Peoples’ aesthetic preferences as well as expectations on a robot’s capabilities
ased on a specific body type must be considered. A wealth of research exists on robot appearance
nd form factors, including body type; see Fink [ 37 ] for a review that remains relevant to this day.
s Fink [ 33 ] found, robots that are more humanlike in shape tend to perform better in social inter-
ctions with people. But this can be a double-edged sword: If humanoid robots are placed in social
ituations but are not equipped with the behaviors necessary to meet human expectations of the
umans that they represent, then user experience will suffer. Additionally, the heads and faces of
obots will receive the most attention, so nonverbal codes involving these areas of the robot body
ay deserve the most attention. Another common theme is the relationship between body shape

nd perceived gender of the robot (e.g., References [ 38 , 39 ]); notably, cultural context can affect
nterpretations of gender, as found in the cases of Wakamaru [ 40 ] and Pepper [ 41 ]. What does not
xist is a link to communication studies. One exception is the work of Jacquemont and colleagues
 42 ], who applied a communication studies perspective on robotic body types so as to match peo-
le’s impressions of their temperament. Specifically, they created an explicitly endomorphic robot
orm, with many round and large components to its shape. However, to the best of our knowledge,
esults on the actual user experience of this robot have not been explored. 

Applying established communication studies frameworks in HRI studies could enhance concep-
ual rigor and provide a way of doing systematic literature surveys on different body types across
ifferent robots, contexts, user groups, and so on. Non-human or proto-human (even alien) forms
ould be explored, with inspiration drawn from animated characters. For instance, Pokémon, the
ctional pocket-holdable monster characters from the series of the same name, are perceived as
ute and engaging despite being generally non-humanoid and even non-animaloid in body type. 
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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4.1.1.2 Clothing. Clothing or dress is another nonverbal code and especially important in creat-
ng a first impression. For people, clothing functions as comfort-protection and preserves modesty
ut also serves as cultural displays about the social class, gender, age, profession, or status in the
ierarchy, to name a few. To our knowledge, research has not explored so far how clothing might
hange people’s perception of a robot. However, we believe cloths could be beneficial especially
or robots working in social contexts. Clothing can be quickly created and changed. As such, it
ay be one of the quickest and easiest nonverbal cues related to physical appearance to explore.
any robots, such as KASPAR [ 43 ], have removable clothing, but the use of clothing, varieties of

lothing, and even manner of wear, such as topless versus bottomless, has not been well studied,
espite the possibility of important effects according to human models. Future work can start to
xplore the possibility of designing clothing for robots, i.e., robot-centered robot clothing and ro-
ot fashion [ 44 ]. Furthermore, clothing can be an easy way to clarify the role of a specific robot in
ublic spaces or its affiliation, similarly to how people wear a specific type of uniform or clothing
hat features the company logo across a variety of jobs. 

4.1.1.3 Kinesics: Body Movement and Gestures. Body movements and gestures are part of the
inesic category of nonverbal cues. These include all nonverbal cues that involve motion of cer-
ain parts of the body or the entire body [ 45 ], such as emblems, adaptors, body posture, and body
anguage. Various taxonomies for gestures, as a particular type of body movement, have been
escribed in the communication literature [ 46 –48 ]. For example, a well-used framework by Mc-
eill [ 46 ] categorizes gestures as iconic, metaphoric, or deictic. Gesture taxonomies are provisional
orking tools tailored to particular research interests [ 46 ]. Therefore, classification systems for
estures in human communication can only be partially applied to HRI. Additionally, some are
imited to certain parts of the body, such as the hands and arms in the case of McNeill [ 46 ]. As
uch, we chose to anchor this work on the taxonomy of Ekman and Friesen [ 48 ], which offers
he following categories: emblems , or gestures, that are a direct verbal translation; illustrators , or
ovements, associated with speech; regulators that regulate speech acts; and adaptors , or repeti-

ive movements for self-satisfaction, based on the earlier work of Efron [ 47 ]. Efron’s categorization
ystem refers to the whole body and thus seems well suited as a basis for HRI. 

4.1.1.4 Emblems. Emblems are gestures that have a direct literal translation shared by the mem-
ers of a social group. These are often actions or behaviors that have a certain meaning in certain
ontexts. Miming gestures, for instance, illustrate a certain action that typically is taken, such as
pening a cupboard door or performing a dance move. As such, emblems are often culturally de-
ned, varying over time and across generational cohorts [ 49 ]. In most cases, it is better to avoid
sing such cues in HRI, because receivers might have difficulty decoding them. Conversely, robots
esigned for specific cultural contexts may need to use emblems to be accepted and understood.
evertheless, while some have recognized that emblems may be culturally sensitive, most have
ot considered this directly within the context of their own work. We now cover some examples.
abibihan et al. [ 50 ] compared the performance of a person and a robot at performing iconic and
mblematic gestures, such as hugging, carrying a baby, and nodding. However, these were not
istinguished as iconic, emblematic, or another type of nonverbal code. Carter et al. [ 51 ] built em-
lematic gestures into the design of a robot that plays catch with a person (throwing up its arms or
hrugging on a near miss and shaking its head back-and-forth if the ball was thrown out of range),
hereas Gross et al. [ 52 ] explored the use of emblematic gestures in place of speech, e.g., using a

humbs up gesture for “great.” Zheng, Liu, and Meng [ 53 ] explored how people interpret 10 “com-
on” emblematic gestures performed by the Nao robot (Aldebaran/SoftBank Robotics), including

lapping and handshaking. We may be able to guess what culture(s) are relevant to the results,
ased on the location of the work conducted. However, this should be stated clearly. Indeed, we
CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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hould not shy away from exploring emblems in HRI. For example, a robot able to demonstrate
astery of the emblems of a specific sub-culture might be more readily accepted by that group,
ith its demonstration facilitating its integration into the group or work-team. Therefore, we must
e conscious of cultural rules and justify our design decisions with and for the cultural group in-
olved. We recommend taking a human-centered design approach, where the needs, expectations,
nd desires of the particular cultural and/or generational group are mapped out and then applied
o the robot. Participatory and co-design methodologies, as well as iterative testing with members
f the cultural group, are examples of how to achieve this. 

4.1.1.5 Illustrators. Illustrators are gestures that provide a description of what is being related
ocally, such as the size or shape of an object demonstrated by drawing the outline of the object
iconic gestures) or an indication of the speed of an object by way of fast or slow hand movements.
llustrators are also used to highlight important points in a speech; see Streeck [ 30 ] for examples.
hey may be the most common type of gestures used in human communication. Salem et al. [ 54 ]
valuated how well people perceive illustrators, such as the size and shape of a vase, performed
y a Honda robot. Adding pointing gestures to a Nao robot delivering vocal directions improved
ts performance [ 55 ]. To ensure the interpretability of the illustrators used, human gestures can be
nalyzed in a specific context, and these can then be transferred into a robotic hand, as was done
y Sheikholeslami et al. [ 56 ]. So far, much work in robotics has focused on developing robots that
erceive human gestures (e.g., [ 57 , 58 ]). More work is needed the other way around: whether
eople can perceive illustrative gestures performed by robots accurately and the degree to which
uch gestures are useful. Illustrators add redundancy to speech by encoding what is being said
nto gestures, thus providing additional cues of how to interpret a message. Work has also
tarted on two-way interaction between people and robots enabled by other technologies, such as
earables (e.g., Reference [ 59 ]). This sets the stage for new forms of illustrator-based bidirectional

ommunication. 

4.1.1.6 Regulators. Regulators are body movements and gestures that manage and direct
 conversation. Regulators, such as head nods, eye contact, and hand gestures pointing to a
pecific communication partner (deictic gestures), are used to manage the conversation flow and
urn-taking between speakers. Their absence can make conversations in larger groups especially
ifficult. Consider the case of Zoom meetings where several people try to speak at the same time.
egulators are especially necessary in HRI when more than one person interacts with a robot
imultaneously or when more than one robot interacts with one or more people simultaneously.
ome previous research has incorporated regulators into a robot’s nonverbal cue set. For example,
ugiyama et al. [ 60 ] developed a “facilitation approach” to increasing the effectiveness of deictic
ointing gestures with the Robovie humanoid robot. Regulators, such as pointing to direct the
ctions of a human partner, are especially effective in combination with speech and eye gaze [ 54 ],
 finding also supported in collaborative tasks [ 61 ]. Other examples of regulators used in HRI are
esitation gestures in the form of the robot slightly withdrawing its hand when it and a person
each for the same object at the same time [ 62 ] or the robot nodding while maintaining eye contact
uring back-channeling (verbal interjections) and turn-taking scenarios in response to more or
ess extraverted people [ 63 ]. In general, regulators as gestures are easy to implement into a robot’s
esture repertoire. The challenge is that the timing of such gestures requires a certain situational
wareness. The first stages of implementation could start with a robot using regulators to signal
he beginning or end of speech. More advanced systems should be able to manage the flow of the
onversation by encouraging a person to respond to specific cues or even being able to encourage
ne person out of a larger group of people to join the discussion, making sure everybody
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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ontributes evenly. Thus, robots could become mediators in group discussions. They might even
e more readily accepted as mediators because of their perceived neutrality to specific topics. 

4.1.1.7 Adaptors. Adaptors (sometimes “adapters”) are repetitive gestures and body motions
hat satisfy physiological and psychological needs. People use adaptors like touching their hair or
ouncing their legs to manage stress. Thus, adaptors reveal information about a person’s inter-
al emotional state. Adaptors may be conscious or unconscious, controllable or uncontrollable. As
uch, they could be useful in HRI for improving humanlikeness and a sense of reciprocity, espe-
ially in terms of social emotions or emotional contagion. Very few examples on the use of adaptors
n HRI exist. Vocal and body adaptors (an “umm” and touching the chin) have been explored in
wkward conversation settings [ 64 ] or added to increase social appropriateness at the end of a con-
ersation [ 65 ]. However, few studies have explored adaptors as part of a robot’s regular gesture
epertoire. We can imagine many possibilities that should not be technically difficult to implement
iven what has so far been achieved with other codes. We can work up to a range of small cues
orking in concert to produce a larger impression intended to reveal a robot’s internal state, such

s a nervous-looking robot that breathes, shifts side-to-side, clutches its fingers, cowers a little,
links rapidly, and so on. Robots displaying adaptors could also communicate a certain degree of
ulnerability and insecurity that might make them more relatable and approachable, especially
n first-contact situations or with inexperienced users. A robot development kit made up of the
mallest gestures and behaviors may be useful for crafting a range of adaptors. 

4.1.1.8 Posture and Body Language. Posture refers to a special position of the body or the way
hat a person holds their body. The four basic body postures are standing, sitting, squatting, and
ying down [ 66 ]. There are many variations in postures, but a basic distinction can be made be-
ween dynamic postures (when the body is in motion, e.g., walking) and static postures (when
he body is not moving, e.g., sleeping or standing). Position and posture can communicate the
ttitude and relationship status of a sender [ 67 ]. For example, Mehrabian [ 68 ] found that when
ommunicators who were women adopted an open posture, they were interpreted as having a
ore positive attitude than when they adopted a closed posture. Dynamic postures are also a rich

ource to express emotions, e.g., shying away when anxious, raising one’s arms in an outburst of
appiness. Such “emotional body language” involves the whole body and coordinated movements
hat facilitate the interpretation of a person’s emotions [ 69 ]. Using the body language of robots to
xpress emotions appears to be an effective tool, as well. Robotic emotional body language can be
nterpreted similarly to that of humans, and people can correctly identify emotions displayed in
ey poses [ 70 ]. A review of studies on affective-expressive movements for robots by Karg et al. [ 71 ]
evealed that work so far has mainly focused on a small set of movement types restricted to the
pper half of the body. They suggest that more research on the relationship between movement
ype and style of expressiveness is needed, e.g., whether walking up and down, slow or fast, will
esult in completely different impressions of the robot. 

Full body motion, like jumping up and down while waving your hands toward a friend who
s trying to find you in a crowd of people, is generally an effective way to attract attention. In
RI, body posture can communicate the activation status of a robot. An upright, straight posture

an indicate high activation, while a relaxed, crouched posture can indicate inactivity. Similarly,
ifting or lowering the head can indicate activation or inactivation. These behaviors can be seen
n the Cozmo and Vector robots (Digital Dream Labs) and the Nao robot. Notably, robotic motion
nd movement of body parts is often accompanied by the sound of the motors involved in these
ctions, which can be distracting to the receiver [ 29 ]. We can explore whether subtle social hu-
an phenomena apply to robots. For instance, a robot can incline toward a speaker or mimic the

onversation partner’s posture to promote feelings of interest and sympathy [ 72 ]. This could have
CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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mplications for power and social hierarchies, as well as robot acceptance and affect. Therefore,
obots taking on different roles could communicate their status via specific postures, such as a
obot teacher using power poses [ 73 ], e.g., standing upright with legs slightly apart, to create an
ura of authority, or a service robot using a submissive pose, e.g., slightly bending its body or lean-
ng toward a customer to communicate respect and attentiveness. Some work has also started to
dapt human measures and instruments. In particular, McColl and Nejat [ 74 ] applied the Position
ccessibility Scale from the Nonverbal Interaction States Scale [ 75 ] to an HRI context. Others may
e adapted for HRI. 

4.1.1.9 Proxemics. Proxemics refers to the perception and management of space, including dis-
ance from others. For robots, proxemics is as part of its kinesthetic body language. People create
oundaries and control areas of space with their body language. Cultural groups have different
ules for what kind of behavior is accepted depending on the type of territory (e.g., References [ 76 ,
7 ]). Certain intimate behaviors that are exhibited in the home might not be acceptable in public,
nd people are usually expected to follow these rules. This applies to dress codes as well. A spe-
ial type of perceptual or psychological space is the personal space , a kind of invisible bubble that
urrounds a person. People are sensitive about violations of personal space, as it defines the accept-
ble distance to other people based on many contextual factors ranging from gender, relationship
tatus, social hierarchy, and so on. Violations of personal space can trigger strong reactions, such
s high arousal, anxiety, and physical aggression [ 78 ]. 

Proxemics has been widely studied within HRI. In an early work, Walters et al. [ 79 ] used
ysenck’s model of personality traits to explore spatial zones in HRI, finding that people who
ere more “proactive” kept greater distance compared to others. Stark et al. [ 80 ] explored comfort

evels when a robot violated the person’s personal space during a collaboration activity. People’s
pproach behavior toward robots is influenced by whether they perceive the robot as acting au-
onomously or as teleoperated [ 81 ]. It is also influenced by perceived liking and gaze patterns, such
hat people keep away from unlikable robots with sharp gazes [ 82 ]. Furthermore, previous studies
y Kim and Mutlu [ 83 ] revealed a relationship between proxemic distance (close versus far), task
istance (cooperative versus competitive), and power distance (supervisor versus subordinate),
howing that consistency in these various kinds of distancing is key. Peters et al. [ 84 ] found that
eople responded akin to human–human interaction contexts when walking with virtual human
haracters and a humanoid robot (in this case, Pepper) in terms of social distance. 

Many other factors, nonverbal and otherwise, can influence proxemics between people, and this
s sure to be true in HRI contexts, as well. The experience of near-future applications on exoskele-
ons and exorobotics (e.g., Reference [ 85 ]), where the robot is intimately close to the human body,
ill need to be evaluated. While people usually have some understanding about the size of another
erson’s personal bubble and try to avoid intrusion into this space, a similar awareness might not
xist for or by robots. Clear visualizations of a robot’s personal space could prevent violent, inap-
ropriate, and/or dangerous inter/actions with and/or toward robots. Another question is whether
umanlike robots are more likely to be perceived as having something like a personal bubble com-
ared to machinelike robots or if the size of this perceived space differs. These questions might be
specially useful for explaining people’s approach and avoidance behaviors toward different types
f robots. 

4.1.2 Facial Expressions. Facial expressions can be very complex and are often interpreted as
isplays of emotions. Facial expressions for basic emotions such as happy, sad, surprised, angry,
cared, and disgusted are believed to be universal [ 86 ]. However, they are also psychologically con-
tructed mental events based on internal and external factors to the person [ 87 ]. The emotion of
sadness” for one person may not match another or even match that same person in other events
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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r times. Specific cultural rules apply when it is appropriate to show certain facial expressions.
eople learn early on how to modify facial displays as part of becoming good communicators.
apanese people, for example, try not to show sadness, because it might have a negative effect on
thers. Similarly, Western cultures often expect women to smile and withhold expressions of anger,
hile men can go without smiling and their expression of anger tends to be more accepted [ 88 ].

urthermore, we learn rules for facial expressions that are adequate for specific professional envi-
onments: the so-called professional display rules . Kindergarten teachers learn to appear cheerful
nd kind, shop assistants smile and are friendly even when confronted with customer complaints,
nd so on. 

A tremendous amount of work has gone into exploring facial expressions in robots. Seminal
ork includes Breazeal and colleague’s Kismet [ 89 ], the eye-centered robot by Tojo et al. [ 90 ],
anoh and colleague’s Ifbot [ 91 ], Hashimoto and team’s expressive SAYA [ 92 ], and Bennewitz
nd colleague’s Fritz [ 93 ], to name a few. More recently, a range of high- and low-fidelity options
ave been explored. On the high end, the humanoid headbot Sophia by Hanson Robotics has made
aves with its ultra-realistic facial expressions. On the low end, Seaborn et al. [ 94 ] used simple
ED eye animations combined with nonverbal utterances to convey expressions of pleasure and
ismay in a semi-humanoid robotic food waste recycling bin. Current efforts on facial displays in
obots have largely focused on making robots more humanlike by giving them the appearance of
eing able to feel emotions. However, the purpose of facial expressions is not limited to revealing
ne’s inner affective state; facial expressions are also an important tool for building relationships
ith others. Research should explore the purposeful use of facial expressions in different contexts
ith the goal of creating shared understandings and situational awareness between robots and
umans, as well as to communicate feelings of empathy. Robots “pretending” to have emotions are
erceived as uncanny by some [ 95 ]. Thus, using emotion as a social response to certain situations
e.g., a robot that fails to complete a task highlights this failure to a human partner by expressing
isible anger) without the goal of revealing an inner affective state might be more valuable for HRI
ettings. 

4.1.3 Eye Behavior (Oculesics). It is said that eyes are the window to a person’s soul. True or
ot, eye behavior is key to successful social interactions. Eye gaze can promote or hinder contact.
utual gaze is usually the first step in starting an interaction, signaling awareness of the other per-

on and a willingness to engage with each other [ 96 ]. According to Adams and Kleck [ 97 ], direct
aze is associated with approach behavior, whereas averted gaze is associated with avoidance be-
avior. Furthermore, direct gaze can be interpreted either as threatening or friendly, depending on
ther contextual cues. Recent work suggests that people do not necessarily look into each other’s’
yes; instead, eye gaze fluctuates between the eye and mouth region, indicating that face gaze may
e a more appropriate moniker than “eye gaze” [ 98 ]. Eye behavior might also be associated with
ertain character traits, as suggested by Grumet [ 99 ]. For example, the relationship between eye
aze and extraversion was explored in the ECA Linda [ 100 ], where extraversion was defined as
azing at the user 90% of the time and introversion was set to 30% of the time; however, the ef-
ect of differing eye gaze could not be experimentally detected. Another potential source for social
ues is pupillary dilation. The constriction and dilation of the pupil has the primary function of
ontrolling the amount of light admitted into the eye. However, studies suggest that pupil dilation
an also be a sign of interest [ 101 ]. Furthermore, pupil size can correspond to negative emotional
xpressions, with smaller pupil sizes indicating higher intensity and sadness of perceived emotions
 102 , 103 ]. 

In HRI, eye gaze is often paired with cues that can be classified as other nonverbal codes, espe-
ially regulators; we have already described several (e.g., References [ 54 , 61 , 63 ]). Previous research
CM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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as revealed positive effects of robotic eye contact. For example, a robot who kept eye contact with
ne member of a group, to the exclusion of others, was seen as favoring that member [ 104 ]. Also,
hared gaze attention cue during handovers of a bottle of water sped up the handover process
 105 ]. In contrast, van Dijk et al. [ 106 ] evaluated eye gaze in combination with verbal messages
nd gestures but did not find an effect. Eye gaze has also been explored as a control mechanism. For
nstance, Yu et al. [ 107 ] explored eye gaze for object selection by a human operator during control
f a teleoperated drone. Eye gaze has long been of interest in HRI. Future work can explore more
omplicated situations as well as subtleties in gaze, especially gaze switching at certain moments
n an interaction. Furthermore, some topics in eye gaze have received almost no attention in HRI.
or instance, pupillary dilation has not been well researched yet. Changes in pupil dilation could
rovide additional cues to a person interacting with a robot, indicating interest (dilated pupils)
r focus and intensiveness (smaller pupils). These are technically easy to implement into a robot.
esign inspiration can be drawn from human models as well as from fictional representations of
uman(oid) characters in comics and animation. 

.2 Auditory Nonverbal Codes 

4.2.1 Paralanguage. Auditory codes are another human sensory channel sensitive to nonverbal
odes. Paralinguistics is a key element of this phenomenon. Paralinguistics, also called vocalics, is
he study of paralanguage , which refers to the sounds that accompany speech but are not words.
his includes vocal qualities , such as pitch, tone, and intonation patterns of the voice; vocalizations ,

rom groans to giggles to cries to yawns; and vocal segregates , such as vocal fillers like “uh,” “ah,”
um,” pauses and dragging out sounds at the start or end of words. Paralanguage can convey affect,
uch as how laughing out loud conveys being happy and yawning conveys feeling tired or bored.
ilence is also an element of paralanguage. Silence can have a positive or negative meaning. It can
onvey respect, intimacy, or comfort. However, silence when a response is expected can generate a
egative impression or signal rejection, such as not laughing when a joke is told or not replying to
 question. In general, people are very sensitive to the emotional quality of a voice and can detect
f a person is happy or sad, cynical, or sarcastic. Voice parameters indicating different emotions
nclude pitch, pitch range, and pitch change, voice intensity, tone, and contour [ 108 ]. 

Paralanguage has a long and rich history in robotics, stemming from early explorations in com-
uter voice [ 109 ]. See Seaborn et al. [ 5 ] for a review featuring many examples across the robotic
pectrum. Much work has focused on replicating speech, i.e., robots made to speak human lan-
uages. Recently, there has been a turn to non-speech or at least speech that does not involve
ords ( non-linguistic utterances ) [ 110 ]. In an early paper, Read and Belpaeme [ 111 ] described non-

inguistic emotive auditory cues for child–robot interaction. Savery et al. [ 112 ] created Shimi, a
obot that sings without words and moves without humanoid limbs to convey emotionality. Non-
inguistic utterances and other forms of vocal but non-speech paralanguage can get around the
ticky issue of natural language processing. Another promising direction is robotic regulators for
ackchannelling , or verbal interjections, and its various forms [ 113 ]. Backchannelling can be very
requent, as in aizuchi (interjections to indicate that the listener is paying attention) during Japan-
se conversations, to less frequent, as well as being comprised of a mix of verbal and nonver-
al cues. Certain cues, such as laughter, are virtually uncharted territory in the design of robots,
ven though there are robots that detect and respond to laughter (e.g., Reference [ 114 ]), as well as
uch work on using human laughter to measure engagement and enjoyment in HRI contexts (e.g.,
eference [ 115 ]). 

4.2.2 Chronemics. Chronemics is the study of the use of time in nonverbal communication.
eople can have different time orientations, being focused more or less on the past, present, or
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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uture [ 116 ]. Time orientation can influence the cognitive level of behavioral functioning. Beliefs
rounded in past experiences, current appraisals, and reflections on future options affect people’s
ctions and motivation [ 117 ]. A person’s time orientation can affect how they perceive time as
ell as their willingness to wait or be punctual. Chronemics, as such, can be expressed through
ody language and behavioral patterns. Since chronemics has been studied mainly in conversa-
ional settings, we have included it in the category of auditory nonverbal codes. Time distribution
n conversation is an expression of each person’s power, shown through the length of the conver-
ation, turn-taking, speech time, and conversation initiation and closure. 

Most of the research on chronemics has focused on conversation scenarios, notably turn-taking
e.g., References [ 118 , 119 ]), conversational fillers (e.g., Reference [ 64 ]), and topical time orientation
 120 ]. Time orientation poses several relevant questions for robots. Do robots have a time orien-
ation? Or are they perceived to have a time orientation by people? Is a robot speaking quickly
erceived differently from a robot speaking slowly? Should a robot pause when it is processing in-
ormation? Should a robot be late in a culture where people are usually not on time? Could robots
mplify a person’s time orientation by preserving the past and extending one’s existence into the
uture? For example, the Japanese artist Etsuko Ichihara 3 created a robot with the printed face of
 deceased person, imitating the person’s speech and behavior. Inspired by traditional Japanese
uneral rites, the robot spent 49 days (called shijukunichi, the time period during which a spirit is
xpected to reach the next life, according to Shinto traditions) with family members to gradually
id farewell. Taxonomies of specific varieties of chronemics may be created or adapted for devel-
ping HRI scenarios. For instance, the taxonomy of conversational interruptions developed for
CAs by Cafaro, Ravenet, and Pelachaud [ 121 ] could be translated to HRI contexts. Indeed, their
rocedure of involving people choosing the optimal behaviors, i.e., nonverbal cues in response to
nterruptions, to develop the underlying algorithm could be replicated with robots. 

.3 Haptic Nonverbal Codes 

aptics refers to somatosensorial sensation. Haptic communication is how people and other an-
mals communicate via touch. As such, haptics might be the most primitive but also the most
ssential form of nonverbal communication. For example, studies have shown that foster children
eprived of touch have developmental delays [ 122 ]. The affective touch hypothesis proposes that
ouch has an important effect on emotional well-being [ 123 ]. Positive emotions evoked through
entle strokes (e.g., grooming) seem to mediate socializing behavior [ 124 ] and appear to play a
rucial role in autism [ 125 ]. Furthermore, touch deprivation is linked to depression and violence
 126 , 127 ]. However, cultural groups have different rules about who, how, and how often members
an touch each other. Violations of these rules can have social and legal consequences, such as
ouch or body contact that is perceived as being inappropriate or unwanted. Touch initiation is a
ominant behavior that controls or directs the behavior of others. For instance, people perceived
o be of higher status may initiate touch. However, touching also fulfills basic psychological needs.
ugging friends and family members or stroking the warm fur of animals creates positive feelings,

s comforting, and reduces stress. 
Haptics has long been explored in HRI, like the seal robot by Shibata and Tanie [ 128 ] that can

e held and stroked or the pet alternative robot by Yohanan and MacLean [ 129 ]. Other research
as looked into surface temperature, finding that warm temperature was important when people
eld hands with a robot [ 130 ]. Hu and Hoffman [ 131 ] created a robot that can have goosebumps.
obots that respond to touch might provide an alternative approach to therapy for people with
 Learn more about Etsuko Ichihara’s “Digital Shaman Project” here: https://etsuko-ichihara.com/works/digital _ shaman _ 
roject/ . 
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utism, a developmental disorder associated with various sensory-perceptional anomalies [ 132 ],
s suggested in a recent systematic review on social robots interacting with autistic people [ 133 ].
owever, touch in human interaction fulfills different needs but also follows social rules. We must

hen recognize the ethical implications of increasingly realistic touch sensations and situations in
RI [ 134 ]. Would people accept being poked by a robot to grab their attention, for instance? There

re many questions to explore. Surely robots should respect existing cultural rules about touching.
 robot initiating touch might be perceived as intruding into someone’s personal space, or even an
ggressor, depending on the context and expectations. However, a robot providing haptic feedback
hen touched by a person could foster intimacy and support relationship-building, an important

spect for social robots. 

.4 Olfactory Nonverbal Codes 

lfactics, or the sense of smell, is probably the least understood of all human sensations. People
eem to have universal preferences for scents that may have biological and evolutionary roots.
ualities and thoughts attributed to different scents seem to play an important role. For instance,
e may feel that people who smell “bad” are repellent, while people who smell “good” are attrac-

ive. Olfactory sensation seems to have an influence on social interaction as well. For example,
umans seem to generate specific chemo-sensory signs to signal a specific emotional state, such
s fear and happiness, and some people can fairly accurately distinguish these [ 135 ]. De Groot
t al. [ 136 ] compared mood odors for disgust and fear, showing that they produced matching fa-
ial expressions in participants who were exposed to both of these odors. There is also growing
vidence that every person has a unique odor signature [ 137 ] that can be identified by close rela-
ives [ 138 ]. However, olfactics has been all but neglected in HRI so far. Even so, we believe that this
s an area ripe for research. Some work in HRI [ 139 ] has explored robots that are able to detect and
istinguish scents, especially in teleoperation contexts such that the robot’s “nose” is an extension
f the human operator’s senses (e.g., Reference [ 140 ]). Work in the related field of HCI has ex-
lored olfactory displays (e.g., References [ 141 , 142 ]), providing technical proofs-of-concept. One
roject combined robots and an olfactory display in a four-dimensional theater experience [ 143 ].
et, HRI work on scent is virtually nonexistent. We can translate this work to HRI. We can explore
hat scents are suitable for which kinds of robot forms. We can examine whether and how peo-
le may be influenced by different scents in subtle ways. For instance, can a robot’s scent affect
pproach distance or delineate its personal bubble? We can evaluate the relationships between
cent and other factors, such as personality and humanlikeness. Specific scents could also help to
ersonalize robots and make them unique. There is much work to be done. 

.5 Gustatory Nonverbal Codes 

he gustatory sense, or sense of taste, is not a nonverbal code usually considered in the commu-
ications literature. However, we include it to complete the list of the human sensory channels

nvolved in HRI. Taste receptors can be mainly found on the human tongue. Research has shown
hat we can distinguish five different taste modalities: sweetness, sourness, saltiness, bitterness,
nd savoriness (also called umami) [ 144 , 145 ]. In most HRI contexts, the gustatory sense will cer-
ainly not be relevant. However, robots used for feeding people, such as robots that assist young
arents, robots in care facilities for older people, or robots for patient care, could stimulate pa-
ients’ gustatory senses during feeding. In general, gustatory sensation weakens in older people
 146 ], giving the impression that food is tasteless and consequently reducing appetite. Also, certain
edical conditions, such as “long COVID,” involve a loss of taste [ 147 ]. Some research has experi-
ented with taste displays that can reproduce the five basic taste modalities using gels [ 148 , 149 ].

ntegrating this technology into feeding robots could enhance or alter the taste of food according
ACM Transactions on Human-Robot Interaction, Vol. 12, No. 2, Article 22. Publication date: March 2023. 
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o patient preferences to stimulate appetite and ensure patients receive the necessary amount and
alance of nutritious food. 

 CONCLUSION 

e have provided a comprehensive overview of nonverbal codes identified in human–human com-
unication by the field of communication studies and outlined how these nonverbal codes appeal

o the human sensory systems involved in HRI, including vision, auditory perception, haptics,
lfactor y, and gustator y perception. We have translated these to the case of robots, offering sev-
ral suggestions for research and development in robotics and HRI. We believe that the nonverbal
odes we have covered in this article are especially promising for HRI research. While some topics
ave been explored already, notably body movement and gestures, other topics, such as haptics,
lfactics, and chronemics, are ripe for exploration. Methodologically, this was a difficult article
o compile, because much of the HRI literature does not use the terminology of communication
tudies. For instance, we found references to “deictic” as a sub-category of the nonverbal code
regulators,” but the term “regulators” is not mentioned. Additionally, while there is much work
o be found in HRI under certain cross-disciplinary terms, such as “gestures,” these terms are far
oo broad to allow easy navigation and categorization of that literature. As such, we could only
rovide a sampling of examples based on the keywords used in HRI papers and the literature that
e know as researchers working within or adjacent to HRI. We also aimed to include work from
 variety of authors covering different regions, fields of study, and career stages so as to capture a
ange of ideas from the diversity of people working in this area. As such, the work presented here
ffers a mapping of how a communication studies framework can and does apply to HRI. Let us
egin the process of interdisciplinary categorization and chart a path for future research together.
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